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The simplest viewpoint of nonlinear systems far from equilibrium suggests that 
the state of maximum entropy production is most stable among various possible 
metastable states under external perturbation for immobile boundaries, and that 
the shape with maximum increasing rate of entropy production is stabilized for 
mobile boundaries. Examples of computer simulation are demonstrated for a 
chemical structure and a growing random pattern. 
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1. INTRODUCTION 

The formation of macroscopic patterns is a fascinating phenomenon char- 
acteristic of nonlinear systems far from equilibrium. Examples including 
well-known Benard convection are common to our daily life. Individual 
mechanisms which lead to their structures have mostly been understood so 
far as the onset is concerned. When the system is subject to a boundary 
condition farther and farther from thermal equilibrium, the system gener- 
ally evolves to a more and more complicated structure. The structure in 
general depends on the initial and boundary conditions, and cannot be 
obtained analytically. 

As for Benard convection the pattern formation has been fairly well 
studied both theoretically and experimentally. The pattern formed by the 
velocity field of convecting fluid in a system of a large aspect ratio is quite 
complex, as observed experimentally by J. P. Gollub, A. R. McCarriar, and 
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J. F. Steinman (l~ and by V. Croquette, M. Mory, and F. Schosseler. (2) H. S. 
Greenside, W. M. Coughran, and N. L. Schryer (3~ have succeeded in 
reproducing most of the features observed experimentally by computer 
simulation based on the amplitude equation. Y. Pomeau and P. Manne- 
ville (4~ have discussed the selection of the unique wavelength among 
various ones possible in linear theory. In a simple case a Lyapounov 
functional exists and the steady state corresponds to the minimum of the 
functional. The contribution from the boundaries, bending and defects in 
the texture was discussed by M. C. Cross. (5) In the more general case when 
there is no Lyapounov functional one has to depend on numerical calcula- 
tion to obtain the preferred structure. 

In dendritic crystal growth J. S. Langer and H. Muller-Krumbhaar (6) 
have proposed the "marginal stability hypothesis" for the mode selection. 
The nonlinear mechanism to stabilize this selected mode is not known at 
the present stage. (v) Thus, it is not possible at present to obtain analytically 
the preferred mode of the pattern except for  some special cases. Also there 
is no common physical understanding for the stability of the selected 
patterns in general for the nonlinear systems far from equilibrium. 

In this paper I would like to review a simple thermodynamic viewpoint 
which the author has proposed and to present some examples of numerical 
calculations for the stability of steady states and growing patterns. 

2. A THERMODYNAMIC VIEWPOINT 

One of the simplest viewpoints for a nonequilibrium system is to look 
at a total system consisting of the nonlinear system (hereafter n-system) 
under consideration and several thermodynamic reservoirs in contact with 
the n-system as a closed system. There, the reservoirs, each of which has 
different thermodynamic quantity, are very large but finite. We discuss a 
simple case where the evolution of the total system is described by its phase 
space volume. Then, for a proper time scale the entropy of the total system 
is a monotonic function of time. One might argue more strongly that the 
system has the highest probability of choosing the path for which the 
entropy increment of the total system is maximized if some conditions for 
the time scales are satisfied. (8) This choice of the path shares a common 
basis with the second law of thermodynamics, but it was naturally not 
stressed in equilibrium thermodynamics. For nonequilibrium phenomena 
this choice of the path plays an important role. For a system in contact 
with more than two immobile boundaries such as the Benard convection 
system there is a time domain for which the n-system behaves asymptoti- 
cally steadily, if the reservoirs are large enough. One may argue that the 
most stable state corresponds to the state of the maximum entropy produc- 
tion for then-system, since all the reservoirs are assumed to be ideal. This 
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variational principle is equivalent to the "energy flow maximum principle" 
which A. J. Lotka proposed for the evolution of biological systems (9) and to 
the "principe de facilitation" which M. N. J. Felici has proposed. (1~ 

For a system which has growing boundaries such as crystal growth, 
there is a time domain in which the entropy production varies as a power of 
time. We argue here that the mode of growth is most stabilized when the 
exponent of the increment of the entropy production is maximized. 

In the next section we demonstrate some examples of numerical 
calculation which are in agreement with this simple viewpoint. 

3. RELATIVE STABILITY AMONG VARIOUS POSSIBLE 
STEADY STATES 

Recently M. Suzuki and the author ~1) have investigated relative 
stability among various metastable states of a convecting charged fluid 
system by computer simulation. They have found that the most probable 
state in the presence of external noise lies in the region corresponding to the 
maximum current carrying states within the computational error. H. S. 
Greenside, W. M. Coughran, and N. L. Schryer (3) have found in their 
computer simulation for the evolution of the convecting pattern that the 
heat current increases monotonically with time and that the steady states 
would correspond to the maximum heat transport. 

Here we would like to discuss relative stability among various metasta- 
ble states of a chemical reaction system. Let us consider 51 cells of a 
Brusselator chemical reaction system coupled one dimensionally. By adjust- 
ing initial conditions for the distribution of an intermediate x one can 
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An example of the structure in the concentration of an intermediate X of linearly 
coupled Brusselator reaction cells. Np = 3, Xf = 0.15. 
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Fig. 2. 
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Total mole of the intermediate Y for the various steady states. The minimum of M~' 
corresponds to the maximum of the entropy production for the Brusselator. 

obtain several metastable states such as shown in Fig. 1.(12~ The numbers of 
possible metastable states, each of which is specified by the peak number 
N e and the spacing between the peak Xp, are found to be 5, 3, 3, 1, l for 
Np = 3, 4, 5, 6, 7, respectively. For other Np one cannot find any metastable 
state. We have examined relative stability among these metastable states by 
applying external perturbation. For this purpose one of the source concen- 
trations B was fluctuated, to cause a transition from one (Np, Xe) state to 
the other state. After many runs the probability for each state to appear 
was measured, and it was found to peak at Np = 5, and X e = 0.10. Simulta- 
neously the entropy production for each steady state was computed. To 
obtain high accuracy in computation, we calculated the total mole number 
of the intermediate Y instead of calculating the entropy production di- 
rectly, since a simple relation is known between them for the Brusselator. (13) 
As is shown in Fig. 2 the mole My was found to take a minimum value, 
which, in turn, means the maximum value for the entropy production. (12) 
This is an example of a chemical reaction structure whose stability may be 
discussed in terms of the variational principle. 

4. STABILITY OF A GROWING RANDOM PATTERN 

In this section we would like to discuss the relation of the stability of a 
growing pattern to the variational viewpoint. Figure 3 shows an example of 
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Fig. 3. An example of a growing pattern based on the "hot tip model" R = 40, V = 5000. 

a randomly growing pattern based on the "hot tip model". (14) In this model 
the pattern grows from a seed crystal at the center by randomly crystalliz- 
ing its periphery. The parameter  corresponding to the Rayleigh number  in 
the convection is the "tip priority factor" R by which the tips grow faster 
compared to the other sites. The fractal  properties of this growing pattern 
have been studied in detail. (14) Here we focus our attention on the nonequi- 
librium property of the pattern. We define the "surface kinetic dimension" 
D~k = d(O log S/O log V), which measures the logarithmic increment of the 
surface S with respect to that of the volume V. This dimension is 1 for a 
two-dimensional compact  growth and 2 for an extremely ramified structure. 
It can be shown that the larger the increasing rate of crystallization with 
respect to time the larger the surface kinetic dimension. Figure 4 shows the 
Ds~ -1 measured from the patterns as a function of the tip priority factor R. 
Two breaks are observed in the figure. The first break occurs at R = 5. This 
break was found to correspond to a kinetic surface roughening transition. 
The second break occurs at about  R = 35. This was associated with the 
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Fig. 4. 
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The inverse of surface kinetic dimension Dsk measured from the pattern produced by 
computer simulation for various values of R. 

"bulk to dendritic" transition. These transitions are important in relation to 
crystal growth and are described elsewhere in detail. (~5) Here we wish to 
focus only on the observation that the transitions tend to increase the 
surface kinetic dimension Dsk, or to increase the increasing rate of crystalli- 
zation, therefore of the entropy production. 

In the examples cited above we have seen that a variational viewpoint 
is effective for simple cases. In fact phenomena obeying this variational 
principle seem to dominate the lively part of nature, although counter- 
examples are not negligible as for the case in the presence of hysteresis. We 
believe it would be more efficient for the physical understanding of 
nonequilibrium phenomena to discuss the reason for the deviation from 
this variational principle, if any, than to discuss each problem separately. 
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